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The dielectric response of a charged particle beam to a periodic focusing field enhances the effective
focusing strength, reducing the matched beam radius and affecting the motion of halo particles. The change in
the effective focusing strength is found for a uniform-density beam with a diffuse halo in a quadrupole channel,
giving increases of 2% to 8% for some typical examples. These changes are important for both the production
and behavior of halos in intense, high-energy beams, in which fractional current losses as small as 1028/m can
result in radioactivation.@S1063-651X~96!04211-0#

PACS number~s!: 41.85.Ew, 29.27.Eg

The effective focusing strength of a periodic channel is an
important factor for accelerator applications requiring high
beam intensities, such as heavy ion inertial fusion, radioac-
tive waste transmutation, spallation neutron sources, tritium
production, and muon production. Limiting currents have
been found in the past using the smooth approximation@1# to
find the effective focusing strength of a periodic channel
which, along with the aperture, determines the current that
can be transported through a given channel@2#. Accurate
knowledge of the effective focusing strength is also impor-
tant for matching. Transverse mismatch has been shown to
be an important cause of halo production and the resulting
particle losses@3–5#. Fractional current losses as small as
1028/m can result in radioactivation, inhibiting routine main-
tenance@6#; this can also be the limiting factor in the trans-
port of intense, high-energy beams@7#.

The dielectric response of a plasma to the periodic field of
a Paul trap was recently shown to enhance the effective fo-
cusing strength of the trap@8#. The dielectric response of a
beam to a periodic focusing field is shown here to increase
the effective focusing strength of the channel, by an amount
that depends on the shape of the beam, the type of focusing,
and the ratio of the plasma frequency of the beam,vp , to the
frequency of the focusing,v. The dielectric response and the
fractional change in the effective focusing strength are found
for a uniform-density continuous beam with a diffuse halo
and for a uniform-density ellipsoidal~bunched! beam, both
in a quadrupole channel. The increase in the effective focus-
ing strength results in a higher transverse phase advance per
period, a higher average beam density, and a lower average
beam radius. Since accurate matching is important for beam
applications requiring low losses, the effect of the dielectric
response on the matched beam parameters can be important
for the applications listed above.

A beam in a periodic focusing channel experiences a fluc-
tuating electric fieldEW f(rW,s0), which consists of the fluctu-
ating component of the focusing field,EW c f(rW,s0), and small
fluctuations in the space charge field,EW s f(rW,s0). The position
relative to the center of the beam isrW, and the focusing is
periodic in s, the longitudinal distance along the channel.
Although particles with different longitudinal positions
within the beam are at different phases in the periodic field,
it is assumed that the effects of this are negligible so that the
fluctuating fields can be written as periodic functions of the

longitudinal position of the beam center along the channel,
s0. The focusing field and the space charge field are each
divided into two parts so that the fluctuating components
have an average value of zero and the steady-state compo-
nents vary slowly or not at all withs0.

The frequency of the focusing isv52pnB/S, whereS is
the period of the focusing along the longitudinal direction
andnB is the beam velocity. In general there are three peri-
ods~Sx , Sy , andSz! and three frequencies~vx , vy , andvz!,
one for each of three directions in Cartesian coordinates~x
and y are transverse andz is parallel to the beam axis; for
most practical applicationsSx5Sy!. The focusing field can
be the result of electrostatic or magnetic quadrupole lenses,
induction-acceleration gaps, and magnetic solenoids~if the
beam is considered in the Larmor frame!. It can also be the
result of focusing by electromagnetic fields which are peri-
odic in time and space, as in the case of radio-frequency
quadrupole~RFQ! focusing. The focusing field is written as
an electric field with the approximation that particle motion
in the beam frame is nonrelativistic, so that magnetic focus-
ing can be represented by equivalent electrostatic fields. The
force resulting from the magnetic field of the beam is in-
cluded in the self-electric-field~the space charge field! with
the same approximation. Unless otherwise stated, all quanti-
ties are considered in the laboratory frame. With RFQ focus-
ing and induction-acceleration gaps, it is assumed that accel-
eration along the longitudinal direction is slow enough that it
can be treated as adiabatic, and that the beam is in phase with
the time-varying field so that the focusing field can be treated
as periodic only in longitudinal distance along the channel.

The effective focusing field can be found from the aver-
age field of a particle due to its motion in the periodic field
@9#. The motion of a particle in the periodic field is first
found with the fluctuating field as a function of position fixed
at EW f(rW,s0)5EW f(rW0 ,s0), whererW0 is the position of the par-
ticle averaged over a period. The resulting particle position is
rW01drW; the first-order variation in the position of the particle
resulting from the fluctuating field isdrW. The effective field
that results from the fluctuating fields is then found to first
order from

EW eff5^EW f~rW,s0!&'^~drW•¹W 0!EW f~rW0 ,s0!&, ~1!
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where¹W 0 is the gradient with respect torW0 and the brackets
represent averages over a focusing period, defined for an
arbitrary functionh by

^h~s0!&[
1

S E
s

s1S

h~s0!ds0 . ~2!

The effective field of Eq.~1! has previously been derived for
a Paul trap without space charge@9# and for a periodic fo-
cusing channel without space charge fluctuations@10#. Solv-
ing for drW from the fluctuating field and substituting into Eq.
~1! gives an effective field of

EW eff'
q

gmnB
2 K S E

0

s0E
0

s08EW f~rW0 ,s09!ds09ds08•¹W 0DEW f~rW0 ,s0!L ,
~3!

where q and m are, respectively, the particle charge and
mass, andg5~12n B

2/c2!21/2 is the relativistic factor. In a
quadrupole channel the steady-state component of the trans-
verse focusing field is zero, so the field of Eq.~3! is the total
effective focusing field. For transverse focusing by solenoids
or longitudinal focusing by induction-acceleration gaps, the
steady-state component of the focusing field is typically
much larger than the effective field of Eq.~3!, so that the
dielectric response, which affects only the fluctuating com-
ponent of the field, has much less effect than in a quadrupole
channel with the same frequency and focusing strength.

The dielectric response occurs through the effect of space
charge fluctuations onEW f(rW0 ,s0). This will be found first for
the core and halo of a uniform-density continuous beam with
a diffuse halo in a quadrupole channel with average axial
symmetry. The dielectric response will then be considered
for the core of a uniform-density ellipsoidal~bunched! beam
in a quadrupole channel with average axial symmetry.

The electric field in a transverse direction (x) of a con-
tinuous, uniform elliptic beam with currentI and velocitynB
is @11#

Esx5
Ix

p«0g
2nBxm~xm1ym!

, ~4!

wherexm andym are, respectively, the beam envelopes in the
x andy directions, and«0 is the permittivity of free space. In
a quadrupole channel which has average axial symmetry, the
fluctuations in the two transverse directions have the same
magnitude and functional form, and are out of phase byp.
The beam envelopes can then be written asxm5xm01dxm
and ym5xm02dxm , wherexm0 is nearly independent ofs0
anddxm has an average value of zero. The field of Eq.~4!
can then be split into a steady-state component and a fluctu-
ating component with a linear expansion indxm . The result-
ing fluctuating field component is

Esfx5
2Idxmx

2p«0g
2nxm0

3 . ~5!

Using Eq.~5!, settingEfx5Esfx1Ecfx , whereEfx , Esfx ,
andEcfx are, respectively, thex components of the fluctuat-
ing parts of the effective focusing field, the space charge
field, and the focusing field, and solving fordxm gives

EW f x5EW c f x /«, ~6!

in which « ~by definition! is the dielectric constant. The di-
electric constant for this case is

«512G
vp
2

v2 , ~7!

in whichG51
2, vp5(q2ns/«0gm)

1/2 is the plasma frequency,
andns is the particle number density. Equation~7! will be
used for other types of beams and for halos with different
values forG, depending on the geometry.

In deriving Eqs.~6! and ~7! it is assumed thatv p
2/v2!1,

and that fluctuations in the focusing fields and space charge
fields occur sinusoidally with the same frequency. For most
focusing channels the fluctuating component of the focusing
field is not a sinusoidal function of longitudinal distance
along the channel. In order to define the dielectric constant,
the fluctuations are approximated as sinusoidal functions of
s0. Small deviations in the functional form are assumed not
to have a significant effect on the dielectric response of the
beam.

Since«,1, Eq. ~6! represents an enhancement of the pe-
riodic focusing field for a continuous beam. This effect re-
sults from the fact that the beam has maxima in its extent
along any axis, and minima in the magnitude of its space
charge field, at longitudinal positions along the channel
where the focusing field along that axis is at a maximum.
Likewise, the beam has maxima in the magnitude of its space
charge field where the focusing field is at a minimum. Fluc-
tuations in the space charge field are therefore correlated
with the focusing so that they enhance the effective focusing
field.

Substituting Eq.~6! into Eq. ~3! leads to the conclusion
that the effect of the dielectric response of the beam is to
increase the effective transverse focusing field of a quadru-
pole channel by the factor 1/«2. For example, a continuous
beam in a quadrupole channel withvp/v50.2 has a dielec-
tric constant of 0.98. The dielectric response increases the
effective focusing field of this channel by about 4%.

The same technique can be used to find the effect of the
dielectric response on halo particles surrounding the
uniform-density core of a continuous beam. The model of a
uniform-density continuous beam core that is mismatched in
a continuous~nonperiodic! focusing channel has been used
to study the evolution of halo particles@5#, in which varia-
tions in the space charge field resulting from the oscillating
core were found to drive some particles to larger radii. Here,
the effect on the effective focusing strength is found from
oscillations of the space charge fields for a matched beam in
a periodic channel. The same result applies to a mismatched
beam in a periodic channel if the frequency of the mismatch
oscillations is much less thanv.

The beam has average axial symmetry, and variations in
xm andym are out of phase byp. The dielectric response of
halo particles arises from the periodic motion of the particles
relative to the beam axis, and also from the periodic varia-
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tions in the shape of the core. The electric field along thex
direction outside of a continuous, uniform-density elliptic
beam core is@11#

Esx5
I

4p«0g
2nB

E
t

` 2x

~xm
2 1t8!3/2~ym

2 1t8!1/2
dt8, ~8!

where t is defined by x2/(xm
2 1t)1y2/(y m

2 1t)51. The
position of a halo particle is written as (x,y)
5(x01dx,y01dy), and the envelopes are again
xm5xm01dxm and ym5xm02dxm . The self-electric-field
can then be written in terms of a steady-state component and
a fluctuating component with linear expansions in the fluc-
tuating quantities. Solving for the resulting particle motion
by the same method as in the previous case, the fluctuating
field is again described by Eqs.~6! and ~7!. In this case

G5
xm0
2 ~x0

22y0
2!

~x0
21y0

2!
1
xm0
4 ~3y0

22x0
2!

~x0
21y0

2!3
. ~9!

For example, withx051.5xm0 andy050, vp/v50.2 gives a
dielectric constant of approximately 0.99. The dielectric re-
sponse increases the effective focusing field at this location
by about 2%.

The same method will now be used for the core of a
bunched beam with average axial symmetry, which is taken
as a uniform-density ellipsoid. The electric field in a trans-
verse direction (x) inside a uniform ellipsoid without images
is @11#

Esx5
3Qx

8p«0g
E
0

` dt

~xm
2 1t !3/2~ym

2 1t !1/2~g2zm
2 1t !1/2

,

~10!

wherezm is the beam envelope in thez direction andQ is the
total charge of each bunch. The envelope fluctuation in the
longitudinal direction is typically either out of phase with the
transverse fluctuations byp/2 or it has a different~and non-
resonant! frequency from the transverse fluctuations; either
way it can be ignored in finding the effective transverse fo-
cusing. The electric field of Eq.~10! can then be split into a
steady-state component and a fluctuating component with a
linear expansion indxm . The remaining integral is solvable
analytically, resulting in a fluctuating field component of

Esfx5
23Qdxmx

4p«0xm0
3 g2zm0

F 1

2j2
2
3~12j2!

4j4

1
3~12j2!2ln~$11j%/$12j%!

8j5 G , ~11!

wherej5(12xm0
2 /g2zm0

2 )1/2 is the eccentricity of the bunch
in the beam frame. For a bunch that is spherical in the beam
frame (gzm05xm0), Eq. ~11! becomesEsfx523Qdxmx/
(10p«0xm0

4 ). The same method as in the previous cases re-
sults again in Eqs.~6! and~7!, in whichG equals the quantity
in square brackets in Eq.~11!. For the special case in which
the bunch is spherical in the beam frame,G50.4. For ex-

ample, a beam with an aspect ratio ofgzm0/xm052 ~for
which G is approximately 0.4! in a quadrupole channel with
vp/v50.3, has a dielectric constant of approximately 0.964.
The dielectric response increases the effective focusing field
of this channel by about 8%.

The envelope equations@12# can be used to relatevp/v to
the transverse space charge tune depression (kx/kx0) and the
phase advance per period~sx0!, giving

vp

v
5S 12

kx
2

kx0
2 D 1/2 sx0

pA2gr
, ~12!

in which gr512gxm
2 /2g2zm

2 is the radial geometry factor
@13#. g is the geometry factor, which is a function only of the
aspect ratio of the bunch,gzm/xm , when image fields are
negligible; it is a function also of the pipe radius when image
fields are significant@13#. Without image fields,g can be
approximated as 2gzm/3xm when 1<gzm/xm<4 with about
10% accuracy. Equation~12! applies for a continuous beam
with gr51. The first example of a continuous beam with
vp/v50.2 could therefore correspond tokx/kx050.5 and
sx0559°. The example of a bunched beam withgzm/xm52
and vp/v50.3 could correspond tokx/kx050.5 and
sx0580°.

Comparison will now be made between two uniform-
density beams with the same energy, current, space charge
tune depression, and aspect ratio, one in a periodic quadru-
pole channel and one in a channel with continuous focusing.
Both channels have the same effective focusing strength in
the absence of space charge. With space charge, the effective
focusing strength of the periodic channel is increased over
that of the continuous channel, resulting in a larger phase
advance per period, a higher average beam density, and a
smaller average beam radius.

The envelope equations for a matched beam in a continu-
ous channel @12# can be used to derive v p

2

52nBk x0
2 (12k x

2/k x0
2 )1/2. With a fixed space charge tune de-

pression, the square of the plasma frequency of a uniform-
density beam is therefore proportional to the focusing
strength of the channel,k x0

2 . Using Eqs.~3! and ~6!, the
dielectric response in the quadrupole channel results in an
effective focusing strength ofk x0

2 /«2. Comparing the plasma
frequency of the beam in the continuous focusing channel
~vpc! to that of the beam in the quadrupole channel~vp! then
leads to

GS vp

v D 32 vp

v
1

vpc

v
50. ~13!

An approximate analytic solution to Eq.~13! is

vp

v
'

vpc

v S 12~32G!vpc
2 /v2

123vpc
2 /v2 D , ~14!

which is always accurate to within 1% for 0,vpc/v,0.3 and
20.3,G,1; this was found by a method similar to the one
used previously for the approximate solution to a fourth-
order polynomial@14#.

Using the example of a bunched beam in a quadrupole
channel withgzm/rm52, kx/kx050.5, andvp/v50.3, from
Eq. ~13! the plasma frequency of the beam in the continuous

54 5857BRIEF REPORTS



channel~vpc! corresponds tovpc/v50.29. From Eq.~12!,
sx0580° in the quadrupole channel and 77° in the continu-
ous channel. The corresponding matched beam radius is ap-
proximately 4% lower in the quadrupole channel.

Reducing the frequency of the focusing increases the di-
electric response and increases the effective focusing
strength for a uniform-density beam, but also results in
greater oscillations of the matched beam envelope. For ap-

plications in which current loss into the conducting channel
is an important factor, the increase in the magnitude of the
envelope oscillations as the focusing frequency is decreased
could lead to greater particle losses even as the effective
focusing field on the beam core is enhanced.
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